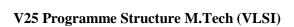
M.Tech

(VLSI) V25 Programme Course Structure & Syllabus

$\begin{array}{c} V25 \ Programme \ Structure \ M. \ Tech \ (VLSI) \\ \underline{I - Semester} \end{array}$


S. No.	Course Code	Subject Name	Subject Code	L	Т	P	С
1	PC	Digital CMOS Circuit Design	V252115731	3	1	0	4
2	PC	Analog CMOS Circuit Design	V252115732	3	1	0	4
3	PC	MoS Device Physics	V252115733	3	1	0	4
4	PE-I	VLSI Technology	V2521157D1				
		Nano Scale Devices	V2521157D2	3	0	0	3
		MOS Devices Modeling and Characterization	V2521157D3	3			3
		Digital System Design through HDL	V2521157D4				
5	PE-II	VLSI Architectures	V2521157E1				
		Power Management IC Design	V2521157E2	3	0	0	3
		Low Power Design Techniques	V2521157E3		Ŭ	Ů	J
		CAD for VLSI	V2521157E4]			
6	PC	Digital CMOS Circuit Design Lab	V252115761	0	1	2	2
7	PC	Analog CMOS Circuit Design Lab	V252115762	0	1	2	2
8	Seminar	Seminar-I	V25211CCN1	0	0	2	1
		TOTAL		15	5	6	23

CONTROLLER OF EXAMINATIONS

PRINCIPAL

$\underline{II} - Semester$

Sl. No.	Course Code	Subject Name	Subject Code	L	T	P	C
1	PC	CMOS Mixed Signal Circuit Design	V252125731	3	1	0	4
2	PC	Physical Design Verification	V252125732	3	1	0	4
3	PC	VLSI Testing & Testability	V252125733	3	1	0	4
4	PE-III	VLSI signal processing	V2521257F1				
		MEMS&NEMS	V2521257F2	3	0	0	3
		SoC design	V2521257F3	3	Ü	Ü	3
		Fundamentals of Semiconductor Package Manufacturing and Test	V2521257F4				
5	PE-IV	Advanced VLSI Interconnects	V2521257G1			0	
		Quantum Computing	V2521257G2	3	0		3
		RF IC Design	V2521257G3				
		NANO ELECTRONICS	V2521257G4				
6	PC	CMOS Mixed Signal Circuit Design Lab	V252125761	0	1	2	2
7	PC	Physical Design Verification Lab	V252125762	0	1	2	2
8		Seminar – II	V25212CCN1	0	0	2	1
		TOTAL	15	5	6	23	

V25 Programme Structure M. Tech (VLSI)

III SEMESTER

Sl. No.	Course Code	Subject Name	Subject Code	L	T	P	C
1		Research Methodology and IPR	V25221CC31	3	0	0	3
2	Internship	Summer Internship/ Industrial Training	V25221CC81	-	-	-	3
	Value Addition Course	Comprehensive Viva	V25221CCK1	-	-	-	2
4	Project Work	Dissertation Part – A	V25221CCA1	-	-	20	10
		TOTAL		3	-	20	18

IV SEMESTER

Sl. No.	Course Code	Subject Name	Subject Code	L	Т	P	С
1		Dissertation Part – B	V25222CCA1	-	-	32	16
		TOTAL	OTAL		-	32	16

I Compaton	DIGITAL CMOS CIRCUIT DESIGN		T	P	C
I Semester	DIGITAL CMOS CIRCUIT DESIGN	3	1	0	4
	(V252115731)				

		Knowledge
		Level (K)
CO1	Analyze MOSFET behavior and CMOS inverter characteristics under	K4
	static and dynamic conditions.	
CO2	Design various combinational and sequential logic blocks using CMOS	K5
	technology.	
CO3	Optimize data path elements such as adders, multipliers, and barrel	K4
	shifters	
CO4	Design and evaluate memory architectures including SRAM and ROM	K5
	cells	
CO5	Interpret and implement circuit layouts using stick diagrams and layout	K3
	rules	

11 0			O			
CO\PO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	Н	M	Н	Н	M	Н
CO2	M	M	Н	Н	M	Н
CO3	M	L	M	Н	L	Н
CO4	M	L	M	M	M	Н
CO5	L	Н	M	Н	M	M

Unit	Syllabus	Contact
		Hours
Unit I	MOS Transistor Principles and CMOS Inverter :	12
	MOSFET characteristics under Static and Dynamic Conditions, MOS	
	Transistor Secondary Effects, CMOS Inverter – Static Characteristic,	
	Dynamic Characteristic, Power, Energy, and Energy Delay Parameters,	
	Stick Diagram and Layout Diagrams.	
Unit II	Combinational Logic Circuits: Static CMOS Design, Different Styles	12
	of Logic Circuits, Logical Effort of Complex Gates, Static and Dynamic	
	Properties of Complex Gates, Interconnect Delay, Dynamic Logic	
	Gates.	
Unit	S Sequential Logic Circuits: Static Latches and Registers, Dynamic	12
III	Latches and Registers, Timing Issues, Pipelines, Non-Bistable	
	Sequential Circuits.	
Unit	Arithmetic Building Blocks: Data Path Circuits, Architectures for	12
IV	Adders, Accumulators, Multipliers, Barrel Shifters, Speed and Area	
	Tradeoffs.	
Unit V	Memory Architectures : Memory Architectures and Memory Control	12
	Circuits: Read-Only Memories, ROM Cells, Read-Write Memories	

	(RAM), Dynamic Memory Design, 6-Transistor SRAM Cell, Sense Amplifiers.	
	Total	60

TEXT BOOKS:

- 1. JanRabaey, Anantha Chandrakasan, B Nikolic, "Digital Integrated Circuits: A Design Perspective", Prentice Hall of India, 2nd Edition, Feb 2003
- 2. N.Weste, K.Eshraghian, "Principles of CMOSVLSIDesign", Addision Wesley, 2nd Edition, 1993

REFERENCE BOOKS:

- 1. MJ Smith, "ApplicationSpecificIntegratedCircuits", AddissonWesley, 1997
- 2. Sung-MoKang & Yusuf Leblebici, "CMOS Digital Integrated Circuits Analysis and Design", McGraw-Hill,1998

INSTITUTE OF SCIENCE AND TECHNOLOGY Diploma / B.Tech / M.Tech / MBA

I Compaton	ANALOG CMOS CIDCUIT DESIGN	L	T	P	C
I Semester	ANALOG CMOS CIRCUIT DESIGN	3	1	0	4
	(V252115732)				

Course Outcomes: At the end of the course, student will be able to (Four to Six)

		Knowledge Level (K)#
CO1	Design basic building blocks of CMOS Analog ICs.	
CO2	Carry out the design of single and two stage operational amplifiers and voltage references	
CO3	Determine the device dimensions of each MOSFETs involved	
CO4	Design various amplifiers like differential, current and operational amplifiers	

#Based on suggested Revised BTL

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M	L	Н	Н	M	Н
CO2	M	M	Н	Н	M	Н
CO3	M	L	M	M	L	M
CO4	M	L	Н	Н	M	Н

CO4	IVI	L	П	П	IVI		П	
Unit			Syllabus				Contac	
							Hours	}
Unit I	MOS Devices an	nd Modeling:	The MOS Ti	ansistor, Pass	sive Compone	ents	12	
	- Capacitor &	Resistor, I	ntegrated Cir	cuit Layout,	CMOS De	evice		
	Modeling - Simple MOS Large-Signal Model, Other Model Parameters,					eters,		
	Small-Signal M	lodel for th	e MOS Trai	nsistor, Com	puter Simula	ation		
	Models, Sub-thre	eshold MOS	Model.					
Unit II	Analog CMOS	Sub-Circuits:	MOS Switch	, MOS Diod	e, MOS Acti	ive	12	
	Resistor, Curren	t Sinks and	Sources, Curi	ent Mirrors	- Current Mi	irror		
	with Beta Helpe	er, Degenerat	ion, Cascode	Current Mirr	or and Wilso	on		
	Current Mirror,	Current and V	oltage Referen	nces, Bandgaj	Reference.			
Unit	Single Stage A	mplifier: Co	mmon Source	Stage with	Resistive L	Load,	12	
Ш	Diode Connect	ed Load,	Triode Load	l, CS Stag	ge with So	ource		
	Degeneration, S	ource Follow	ver, CG Stage	e, Gain Boos	ting Techniq	ues,		
	Cascode, Folded	Cascode, Ch	noice of Devic	e Models.				
Unit	CMOS Amplifie	rs and Noise:	Inverters, Dif	ferential Amp	lifiers, Casco	ode	12	
IV	Amplifiers. Nois	se - Statistic	al Characteris	tics, Types,	Noise in Sin	gle-		
	Stage Amplifiers	s, Noise in Di	ifferential Pair	s, Noise Band	dwidth.			
Unit V	CMOS Operat	ional Ampl	ifiers: Desig	n of CM	OS Op A	mps,	12	
	Compensation of	of Op Amps	, Design of	Two-Stage C	Op Amps, Po	ower		
	Supply Rejectio	n Ratio of 7	Гwo-Stage Ор	Amps, Cas	scode Op Ar	mps,		
	Measurement Te	chniques of	Op Amps.					
						Γotal	6	60

TEXT BOOKS:

- 1. CMOS Analog Circuit Design -Philip E. Allen and Douglas R. Holberg, Oxford University Press, International Second Edition/Indian Edition, 2010.
- 2. Design of Analog CMOS Integrated Circuits- Behzad Razavi, TMH Edition.

REFERENCE BOOKS:

- 1. Analog Integrated Circuit Design- David A. Johns, Ken Martin, Wiley Student Edn, 2013
- 2. Analysis and Design of Analog Integrated Circuits- Paul R. Gray, Paul J. Hurst, S. Lewis and R.G. Meyer, Wiley India, Fifth Edition, 2010.
- 3. CMOS: Circuit Design, Layout and Simulation- Baker, Li and Boyce, PHI.

I Compaton	MOS DEVICES DIVEICS	L	T	P	C
I Semester	MOS DEVICES PHYSICS	3	1	0	4
	(V252115733)				

Course Outcomes: At the end of the course, student will be able to (Four to Six)

		Knowledge
		Level (K)#
CO1	Understand the electrostatics and energy band behavior of MOS structures	K2
CO2	Analyze and model MOSFETs using classical and advanced physical principles	K4
CO3	Evaluate SOI-based MOSFET devices and their operational characteristics	K4
CO4	Apply quantum and ballistic transport concepts to nanoscale transistor design	K3
CO5	Explore and assess modern MOSFET structures including FinFETs and strained-Si devices.	K3

#Based on suggested Revised BTL

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	Н	M	M	M	Н	M
CO2	Н	M	Н	M	Н	Н
CO3	M	L	Н	M	Н	M
CO4	Н	M	Н	M	Н	Н
CO5	M	M	Н	M	Н	M

Unit	Syllabus	Contact Hours
Unit I	MOS Capacitor: Energy Band Diagram of Metal-Oxide-Semiconductor Contacts, Modes of Operation – Accumulation, Depletion, Midgap, and Inversion, 1D Electrostatics of MOS, Depletion Approximation, Accurate Solution of Poisson's Equation, CV Characteristics of MOS, LFCV and HFCV, Non-Idealities in MOS – Oxide Fixed Charges, Interfacial Charges, Midgap Gate Electrode, Poly-Silicon Contact, Electrostatics of Non-Uniform Substrate Doping, Ultrathin Gate-Oxide and Inversion Layer Quantization, Quantum Capacitance, MOS Parameter Extraction.	12
Unit II	Physics of MOSFET: Drift-Diffusion Approach for I–V Characteristics, Gradual Channel Approximation, Sub-threshold Current and Slope, Body Effect, Pao & Sah Model, Detailed 2D Effects in MOSFET, High Field and Doping Dependent Mobility Models, High Field Effects and MOSFET Reliability Issues (SILC, TDDB, and NBTI), Leakage Mechanisms in Thin Gate Oxide, High-K Metal Gate MOSFET Devices and Technology Issues, Intrinsic MOSFET Capacitances and	12

NSTITUTE OF SCIENCE AND TECHNOLOGY Diploma / B.Tech / M.Tech / MBA

	Resistances, Meyer Model.				
Unit	SOI MOSFET: FDSOI and PDSOI, 1D Electrostatics of FDSOI MOS,	12			
III	VT Definitions, Back Gate Coupling and Body Effect Parameter, I-V				
	Characteristics of FDSOI-FET, FDSOI Sub-threshold Slope, Floating				
	Body Effect, Single Transistor Latch, ZRAM Device, Bulk and SOI				
	FET – Discussions Referring to the ITRS.				
Unit	Nanoscale Transistors: Diffusive, Quasi-Ballistic, and Ballistic	12			
IV	Transports, Ballistic Planar and Nanowire FET Modeling – Semi-				
	Classical and Quantum Treatments.				
Unit V	Advanced MOSFETs: Strain Engineered Channel Materials, Mobility in	12			
	Strained Materials, Electrostatics of Double Gate and FinFET Devices.				
	Total	60			

TEXT BOOKS:

- 1. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, Wiley.
- 2. Y. Taur and T. H. Ning, *Fundamentals of Modern VLSI Devices*, Cambridge University Press.
- 3. M. Lundstrom and J. Guo, *Nanoscale Transistors: Device Physics, Modeling & Simulation*, Springer.

REFERENCE BOOKS:

- 1. Y. Tsividis, Operation and Modeling of the MOS Transistor, Oxford University Press.
- 2. J. P. Colinge, Silicon-on-Insulator Technology: Materials to VLSI, Springer.
- 3. Selected research papers in relevant and emerging areas.

INSTITUTE OF SCIENCE AND TECHNOLOGY Diploma / B.Tech / M.Tech / MBA

T Compaton	VLSI TECHNOLOGY	L	T	P	C
I Semester	VESI TECHNOLOGY	3	0	0	3
	(V2521157D1)				

Course Outcomes: At the end of the course, student will be able to (Four to Six)

		Knowledge
		Level (K)
CO1	To understand the semiconductor materials, devices and technology	K2
	historical	
	evaluation	
CO2	To analyze the oxidization process and quality measures in the	K4
	fabrication.	
CO3	To explain lithography importance in the semiconductor industry and	K2
	the various Techniques	
CO4	To apply other process steps like etching, implantation and	K3
	metallization and their applications	
CO5	To understand the concepts of electrical testing and packaging of ICs	K2

11 0		-	O			
CO\PO	PO1	PO2	PO3	PO4	PO5	
CO1	M	M	Н	M	Н	
CO2	M	L	M	L	Н	
CO3	M	M	Н	L	Н	
CO4	M	M	Н	M	Н	
CO5	L	Н	M	L	Н	

Unit	Syllabus	Contact Hours
Unit I	Introduction: Semiconductor materials, semiconductor devices, semiconductor process technology, basic fabrication steps. Crystal Growth: Silicon crystal growth from melt, silicon float-zone process, GaAs crystal growth techniques, material characterization.	12
Unit II	Silicon Oxidation: Thermal oxidation, impurity redistribution during oxidation, masking of silicon dioxide, oxide quality. Photolithography: Optical lithography, E-beam lithography.	12
Unit III	Etching: Wet chemical etching, dry etching. Diffusion: Basic diffusion process, extrinsic diffusion, lateral diffusion.	12
Unit IV	Ion Implantation: Range of implanted ions, implant damage and annealing. Film Deposition: Epitaxial growth techniques, structures and defects in epitaxial layers, dielectric deposition.	12
Unit V	Process Integration: Passive components, bipolar technology, MESFET technology, MEMS technology. IC Manufacturing: Electrical testing, packaging.	12
	Total	60

Text Books:

1. 1. Gary S May & Simon M Sze, Fundamentals of Semiconductor Fabrication, Wiley Student edition, 2012

References:

- 1. S. K. Ghandhi, VLSI Fabrication Principles, John Wiley Inc, 2010.
- 2. S. M. Sze, VLSI Technology, 2/e, McGraw Hill, 2011.
- 3. Stephen Cambell, The Science and Engineering of Microelectronic Fabrication, Oxford University Press, 2013.

INSTITUTE OF SCIENCE AND TECHNOLOGY Diploma / B.Tech / M.Tech / MBA

I Compaton	VLSI ARCHITECTURES	L	T	P	C
1 Semester	VLSI ARCHITECTURES	3	0	0	3
	(V2521157E1)				

Course Outcomes: At the end of the course, student will be able to

		Knowledge
		Level (K)
CO1	Design RISC architecture and control units for a given instruction set.	K5
CO2	Improve the performance of RISC processors by applying pipelining	K4
	techniques	
CO3	Translate DSP algorithms into efficient hardware architectures and	K3
	design associated building blocks	
CO4	Analyze the impact of retiming, unfolding, and folding on the	K4
	performance of DSP architectures	

11 0		-	O			
CO\PO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M	M	Н	Н	Н	M
CO2	M	M	Н	Н	Н	M
CO3	Н	M	Н	Н	Н	Н
CO4	M	M	Н	M	Н	M

Unit	Syllabus	Contact Hours
Unit I	Instruction Set Architectures and CPU Performance: Overview of	12
	Instruction Set Architectures – CISC, RISC, and DSP Processors, CPU	
	Performance and Its Factors, Evaluating Performance Metrics.	
Unit II	Design of RISC Processor: Designing the Datapath and Control Unit for	12
	a RISC Processor, Multicycle Implementation of RISC Architecture.	
Unit	Enhancing Performance with Pipelining: Overview of Pipelining,	12
III	Pipelined Datapath, Pipelined Control Unit, Pipeline Hazards - Data,	
	Control, and Structural Hazards, Techniques for Hazard-Free Pipelined	
	RISC Implementation.	
Unit	Multiprocessors and DSP Algorithm Representation: Introduction to	12
IV	Multiprocessors, Multiprocessors Connected by a Single Bus and	
	Network, Network Topologies, Evolution vs. Revolution in Computer	
	Architecture, DSP Algorithm Representation – Data Flow Graphs, Loop	
	Bound and Iteration Bound, Algorithms for Computing Iteration Bound.	
Unit V	Pipelining, Parallel Processing, and VLSI Performance Techniques:	12
	Introduction to Pipelining and Parallel Processing, FIR Filter Pipelining,	
	Parallel Processing Techniques, Pipelining and Parallel Processing for	
	Low Power, VLSI Architecture Optimization Techniques - Retiming,	
	Unfolding, and Folding.	
	Total	60

TEXT BOOKS:

- 1. D.A,Patterson And J.L.Hennessy, Computer Organization and Design: Hardware/Software Interface, Elsevier, 2011, 4th Edition
- 2. Keshab Parhi, VLSI digital signal processing systems design and Implementations, Wiley 1999
- 3. NPTEL Courses (https://nptel.ac.in/courses/108105157)

I Compaton		L	T	P	C
I Semester	ANALOG CMOS CIRCUIT DESIGN LAD		1	2	2
	(V252115762)				

		Knowledge
		Level (K)
CO1	Have the ability to explain the VLSI Design Methodologies using	K3
	Mentor Graphics Tools	
CO2	Grasp the significance of various cmos analog circuits in full-custom	K4
	IC Design flow	
CO3	Have the ability to explain the Physical Verification in Layout Design	К3
CO4	Fully Appreciate the design and analyze of analog and mixed signal	K4
	simulation	
CO5	Grasp the Significance of Pre-Layout Simulation and Post-Layout	K5
	Simulation	

List of Experiments:

- 1. MOS Device Characterization and parametric analysis
- 2. Common Source Amplifier
- 3. Common Source Amplifier with source degeneration
- 4. Cascode amplifier
- 5. simple current mirror
- 6. cascode current mirror.
- 7. Wilson current mirror.
- 8. Differential Amplifier
- 9. Operational Amplifier
- 10. Sample and Hold Circuit
- 11. Direct-conversion ADC
- 12. R-2R Ladder Type DAC

Lab Requirements:

Software:

Mentor Graphics – Pyxis Schematic, IC Station, Calibre, ELDO Simulator/ Industry Equivalent Standard Software

Hardware:

Personal Computer with necessary peripherals, configuration and operating System.

I Compaton	DIGITAL CMOS CIRCUIT DESIGN LAB	L	T	P	C
I Semester	DIGITAL CINOS CIRCUIT DESIGN LAD		1	2	2
	(V252115761)				

		Knowledge
		Level (K)
CO1	Have the ability to explain the VLSI Design Methodologies using	K3
	Mentor Graphics Tools	
CO2	Grasp the significance of various design logic Circuits in full-custom	K4
	IC Design.	
CO3	Have the ability to explain the Physical Verification in Layout	K3
	Extraction	
CO4	Fully Appreciate the design and analyze of CMOS Digital Circuits	K4
CO5	Grasp the Significance of Pre-Layout Simulation and Post-Layout	K5
	Simulation	

List of Experiments:

- 1. Inverter Characteristics.
- 2. NAND and NOR Gate
- 3. XOR and XNOR Gate
- 4. 2:1 Multiplexer
- 5. Full Adder
- 6. RS-Latch
- 7. Clock Divider
- 8. JK-Flip Flop
- 9. Synchronous Counter
- 10. Asynchronous Counter
- 11. Static RAM Cell
- 12. Dynamic Logic Circuits
- 13. Linear Feedback Shift Register

Lab Requirements:

Software:

Industry Standard Software (Mentor Graphics Tool/Cadence/ Synopsys/Equivalent)

Hardware:

Personal Computer with necessary peripherals, configuration and operating System.

INSTITUTE OF SCIENCE AND TECHNOLOGY Diploma / B.Tech / M.Tech / MBA

II Compostor		L	T	P	C
II Semester	CMOS MIAED SIGNAL CIRCUIT DESIGN	3	1	0	4
	(V252125731)				

Course Outcomes: At the end of the course, student will be able to

		Knowledge Level (K)
CO1	Understand the necessity of mixed signal systems	K2
CO2	Analyze Op-Amp to meet the mixed signal specifications	K4
CO3	Design CMOS comparators to meet the high-speed requirements of digital circuitry	K5
CO4	Develop efficient data converter circuits for mixed signal systems	K4

СО	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M	L	M	M	M	Н
CO2	L	L	M	Н	M	Н
CO3	M	M	M	Н	Н	Н
CO4	M	L	M	Н	Н	Н

CO4	IVI	L	IVI	п	п	п
Unit	Syllabus					
UNIT -	Two-Stage OP-	AMP Design	:Parasitic Effe	cts on Design	of Two-Stage	12
I	OP-AMP, Wid	e-Swing Casc	ode Current l	Mirrors, Desig	gn of Rugged	
	Biasing Circu	uit with T	emperature-In	dependent (Compensation,	.
	_	Challenges in Mixed-Signal Circuit Design.				
	Switched Capacitor Circuits: Constituents: Op-Amp, Capacitors					
	Switches, Non-overlapping Clocks; Basic Operation and Analysis,					
	Resistor Equiv					
	Integrator, P		0			
	Analysis, Desig					
UNIT -	Sample-and-Ho		•			
I	and-Hold Basic				· ·	l I
	Errors, Makin	0 0				·
	Errors Due to	• •			* *	l I
	Switched Capa	acitor Circuits	to Minimiz	e Offset Err	ors, Parasitic	
	Effects.					
UNIT -	Comparators:	•			•	l I
III	Resolving Cap	•	•	•	•	l I
	Conditions for	•			•	
	Pole and Tw		•	•	•	
	Comparators,					l I
	Positive Feedba	ack, Analysis	of Latched Co	omparators, A	rchitecture of	

	High-Speed Comparators, Self-Biased Comparators, Push Pull	
	Comparators.	
UNIT -	Data Converters: Classification, Ideal D/A Converter, Ideal A/D	12
IV	Converter, Quantization Noise: Deterministic and Stochastic	
	Approach, Signed Codes, Performance Limitations: Resolution, Offset	
	and Gain Error, Accuracy and Linearity, Integrating Converters,	
	Design of Successive-Approximation Converters, DAC-Based and	
	Charge-Redistribution SAR, Interleaved, Pipelined, Flash, Principles	
	of Sigma-Delta ADC, Testing of Data Converters.	
UNIT -	PLL and Oscillators: Basic PLL Architecture, VCO, Divider, Phase	12
V	Detector, Loop Filter, PLL in Lock, Linearized Small-Signal Analysis,	
	Second-Order PLL Model, Limitations, PLL Characterization and	
	Design Example, Jitter and Phase Noise: Period Jitter, Cycle Jitter,	
	Adjacent Period Jitter, Spectral Representations and PDF of Jitter,	
	Ring and LC Oscillators, Phase Noise in Oscillators and PLLs.	
	Total	60

TEXT BOOKS:

- 1. David Johns, Tony Chan Carusone and Kenneth Martin, Analog Integrated Circuit Design, Wiley, 2012, 2ndEdition.
- 2. Behzad Razavi, Design of Analog CMOS Integrated Circuits" McGraw Hill Education, 2017, 2ndEdition.
- ${\it 3.} \quad R. Jacob Baker, CMOS: Mixed-Signal Circuit Design, Wiley, 2008, 2^{\mbox{nd}} Edition.$

REFERENCE BOOKS:

- 1. Roubik Gregorian and Gabor C. Temes, Analog MOS integrated circuits for signal processing, Wiley, 1986.
- 2. Roubik Gregorian, Introduction to CMOS Op-Amps and Comparators, Wiley,
- 3. RuiPauloda Silva Martins and Pui-InMak,"Analog and Mixed-Signal Circuits in Nano scale CMOS", Springer, 2024.

Other Suggested Readings:

NPTELCourses(https://onlinecourses.nptel.ac.in/noc22_ee34/preview)

INSTITUTE OF SCIENCE AND TECHNOLOGY Diploma / B.Tech / M.Tech / MBA

II Comogéon	PHYSICAL DESIGN VERIFICATION (V252125732)	L	T	P	C
II Semester	PHISICAL DESIGN VERIFICATION		1	0	4
	(V252125732)				

Course Outcomes: At the end of the course, student will be able to

		Knowledge
		Level (K)
CO1	Understand the relationship between design automation algorithms and	K2
	Various constraints posed by VLSI fabrication and design technology	
CO2	Adapt the design algorithms to meet the critical design parameters.	К3
CO3	Identify layout optimization techniques and map them to the algorithms	K3
CO4	Develop proto-type EDA tool and test its efficacy	K4

CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M	L	M	Н	Н	M
CO2	L	M	M	Н	M	M
CO3	M	M	M	Н	Н	L
CO4	Н	M	Н	Н	M	M

Unit	Syllabus	Contact Hours			
UNIT	VLSI Design Cycle, Physical Design Cycle, Design Rules, Layout of	12			
I	Basic Devices, and Additional Fabrication. Design styles: Full Custom,				
	Standard Cell, Gate Arrays, Field Programmable Gate Arrays, Sea of				
	Gates and Comparison, System Packaging Styles, Multi-Chip Modules.				
	Design Rules, Layout of Basic Devices, Fabrication Process and Its				
	Impact on Physical Design, Interconnect Delay, Noise and Crosstalk,				
	Yield and Fabrication Cost.				
UNIT	Factors, Complexity Issues and NP-hard Problems. Basic Algorithms	12			
II	(Graph and Computational Geometry): Graph Search Algorithms,				
	Spanning Tree Algorithms, Shortest Path Algorithms, Matching				
	Algorithms, Min-Cut and Max-Cut Algorithms, Steiner Tree				
	Algorithms.				
UNIT	Basic Data Structures: Atomic Operations for Layout Editors, Linked	12			
III	List of Blocks, Bin Based Methods, Neighbour Pointers, Corner				
	Stitching, Multi-Layer Operations.				
UNIT	Graph Algorithms for Physical Design: Classes of Graphs, Graphs	12			
IV	Related to a Set of Lines, Graphs Related to a Set of Rectangles, Graph				
	Problems in Physical Design, Maximum Clique and Minimum				
	Coloring, Maximum k-Independent Set Algorithm, Algorithms for				
	Circle Graphs.				

UNIT	Partitioning Algorithms: Design Style Specific Partitioning Problems,	12
V	Group Migrated Algorithms, Simulated Annealing and Evolution. Floor	
	Planning and Pin Assignment, Routing and Placement Algorithms.	
	Total	60

Text Books:

- 1. Naveed Shervani, Algorithms for VLSI Physical Design Automation, 3rd Edition, Kluwer Academic, 1999.
- 2. Charles J Alpert, Dinesh P Mehta, Sachin S Sapatnekar, Handbook of Algorithms for Physical Design Automation, CRC Press, 2008

II Compaton	VLSI TESTING & TESTABILITY	1 3	T	P	C
II Semester	VESI TESTING & TESTABILITY	3	1	0	4
	(V252125733)				

		Knowledge Level (K)
CO1	Identify the significance of testable design	К3
CO2	Understand the concept of yield and identify the parameters influencing the same	K2
CO3	Specify fabrication defects, errors, and faults	K3
CO4	Implement combinational and sequential circuit test generation algorithms	K4
CO5	Identify techniques to improve fault coverage	K5

CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	L	L	M	Н	M	L
CO2	M	M	M	Н	Н	M
CO3	M	L	M	Н	Н	M
CO4	M	M	M	Н	M	Н
CO5	M	L	M	Н	Н	M

Unit	Syllabus	Contact
		Hours
UNIT	Role of Testing in VLSI Design Flow, Testing at Different Levels of	12
I	Abstraction, Fault, Error, Defect, Diagnosis, Yield. Types of Testing,	
	Rule of Ten, Defects in VLSI Chip. Modelling Basic Concepts,	
	Functional Modelling at Logic Level and Register Level, Structure	
	Models, Logic Simulation, Delay Models. Various Types of Faults,	
	Fault Equivalence and Fault Dominance in Combinational and	
	Sequential Circuits.	
UNIT	Fault Simulation Applications, General Fault Simulation Algorithms:	12
II	Serial and Parallel, Deductive Fault Simulation Algorithms.	
UNIT	Combinational Circuit Test Generation, Structural Vs Functional Test,	12
III	ATPG, Path Sensitization Methods. Difference Between Combinational	
	and Sequential Circuit Testing, Five and Eight Valued Algebra, Scan	
	Chain-Based Testing Method.	
UNIT	D-Algorithm Procedure, Problems. PODEM Algorithm, Problems on	12
IV	PODEM Algorithm. FAN Algorithm, Problems on FAN Algorithm.	
	Comparison of D, FAN and PODEM Algorithms. Design for	
	Testability, Ad-Hoc Design, Generic Scan-Based Design.	

UNIT V	Classical Scan-Based Design, System Level DFT Approaches. Test Pattern Generation for BIST, Circular BIST, BIST Architectures.	12
	Testable Memory Design: Test Algorithms, Test Generation for	
	Embedded RAMs.	
	Total	60

TEXT BOOKS:

- 1. M. Abramovici, M. Breuer, and A. Friedman, "Digital Systems Testing and Testable Design, IEEE Press, 1990.
- 2. M. Bushnell and V. Agrawal, "Essentials of Electronic Testing for Digital, Memory & Mixed-Signal VLSI Circuits", Kluwer Academic Publishers, 2000.

REFERENCE BOOKS:

- Stroud,"A Designer's Guide to Built-in Self-Test", Kluwer AcademicPublishers,2002
- V. Agrawal and S.C. Seth, Test Generation for VLSI Chips, Computer Society Press. 1989

Other Suggested Readings:

1. NPTELCourses(https://archive.nptel.ac.in/courses/117/105/117105137/)

II Compostor	FUNDAMENTALS OF SEMICONDUCTOR	 			
II Semester	PACKAGE MANUFACTURING AND TEST	3	0	0	3
	(V2521257F4)				

		Knowledge Level (K)
CO1	Understand the evolution of semiconductor packaging technologies and explain the various backend assembly processes involved in IC packaging.	K2
CO2	Analyze the selection and role of substrate materials, interconnect technologies, and encapsulation methods, along with reliability challenges like delamination and thermal cycling.	K4
CO3	Demonstrate knowledge of electrical and mechanical test techniques at both wafer and package levels, including DC/AC testing, BIST, JTAG, and mechanical integrity tests.	K5
CO4	Apply reliability concepts, failure analysis techniques, and quality control methodologies to assess and improve package manufacturing outcomes.	K4
CO5	Evaluate advanced and emerging semiconductor packaging trends such as 3D stacking, TSVs, RF/MEMS packaging, and environmentally sustainable practices through industry case studies.	K5

СО/РО	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M	L	M	Н	Н	L
CO2	M	M	M	Н	Н	M
CO3	M	M	M	Н	Н	M
CO4	Н	M	M	Н	Н	M
CO5	Н	M	Н	M	Н	M

Unit	Syllabus	Contact Hours
UNIT	Overview of Semiconductor Packaging and Assembly: Semiconductor	12
I	Packaging Evolution and Types (e.g., BGA, LGA, Flip Chip). Backend	
	Assembly Processes: Wafer Dicing, Die Attach, Wire Bonding, Flip-	
	Chip Bonding, Encapsulation/Molding, Marking.	
UNIT	Package Substrate and Interconnect Technology: Substrate Materials	12

П	and Package Interconnections, Role of Glues, Underfill, and Encapsulants. Introduction to Package Interconnect Reliability (Delamination, Thermal Cycling).	
UNIT	Electrical and Mechanical Testing of Packages: Wafer-Level Test, Package-Level Test, Final IC Test. Test Equipment Overview: DC, AC, Functional Tests. Built-In Self-Test (BIST), JTAG Boundary Scan, and Burn-In Testing. Mechanical Tests: Shear, Bend, Pull Strength.	12
UNIT IV	Reliability, Failure Analysis, and Quality Control: Reliability Fundamentals: Bathtub Curve, Failure Mechanisms, Failure Rate Modeling. Process Control Systems for Package Manufacturing Quality. Failure Analysis: Visual Inspection, Decapsulation, X-ray, Electrical Test Correlation.	12
UNIT V	Industry Case Studies & Emerging Packaging Trends: 3D-Stacked Packages, Multi Die Integration, High Density Interposers. Packaging for RF, MEMS, and Sensor Applications. Emerging Materials and Processes: Micro Bump, Through Silicon Vias (TSV), Advanced Substrates. Environmental and Sustainability Considerations in Packaging.	12
	Total	60

Books Recommended

- 1. Veena Chakravarthi, A Practical Approach to VLSI System on Chip (SoC) Design A Comprehensive Guide, Springer, 2020.
- 2. S. Pasricha and N. Dutt, *On-Chip Communication Architectures: System on Chip Interconnect*, Morgan Kaufmann–Elsevier Publishers, 2008.
- 3. Michael Keating, The Simple Art of SoC Design, Springer, 2011.
- 4. Patrick Schaumont, *A Practical Introduction to Hardware/Software Co-design*, Springer, 2009.
- 5. François Ghenassia, Transaction-Level Modeling with SystemC: TLM Concepts and Applications for Embedded Systems, Springer, 2010.
- 6. Wolfgang Grotker, Shuqing Liao, Grant Martin, and Stuart Swan, *System Design with SystemC*, Springer, 2002.

II Comoston	OHANTHM COMPLETING	L	T	P	C
II Semester	QUANTUM COMPUTING	3	0	0	3
	(V2521257G2)				

		Knowledge
		Level (K)
CO1	Understand the fundamental principles of quantum computation and the concept of qubits.	K2
CO2	Analyze multi-qubit systems and quantum communication protocols.	K4
CO3	Analyze multi-qubit systems and quantum communication protocols.	K4
CO4	Design and implement basic quantum algorithms and quantum circuits.	K5
CO5		

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M	L	M	M	M	M
CO2	M	L	M	M	M	M
CO3	M	L	M	M	M	M
CO4	M	L	M	M	M	M

Unit	Syllabus	Contact
		Hours
UNIT	Review of Quantum Mechanics and Motivation for Quantum	12
I	Computation. Qubit: The Qubit State - Matrix and Bloch Sphere	
	Representation - Computational Basis - Unitary Evolution.	
UNIT	Multi-Qubit States: No-Cloning Theorem, Superdense Coding, Pure	12
II	States to Bell States, Bell Inequalities. Protocols with Multi-Qubits:	
	Swapping, Teleportation. Gates: CNOT, Toffoli Gate, NAND,	
	FANOUT, Walsh-Hadamard.	
UNIT	Measurement: Projective Operators - General, Projective and POVM	12
III	Measurement. Ensemble: Density Operators - Pure and Mixed	
	Ensemble - Time Evolution - Post Measurement Density Operator.	
	Composite Systems: Partial Trace, Reduced Density Operator, Schmidt	
	Decomposition, Purification, Bipartite Entanglement.	
UNIT	Quantum Computing: Classical Computing Using Qubits, Quantum	12
IV	Parallelism, Deutsch's Algorithm, Deutsch-Jozsa Algorithm.	
UNIT	Quantum Circuits: Basic Gates, ABC Decomposition, Gray Codes,	12
V	Universal Gates, Principle of Deferred and Implicit Measurements.	
	Quantum Fourier Transform and Applications: Phase Estimation, Order	

Finding, Factoring, Discrete Logarithm, Hidden Subgroup Problems.	
Role of Prime Factoring in Classical Cryptography. Search Algorithms,	
Quantum Error Correcting Codes, Physical Realization of Qubits.	
Total	60

Text Books:

- M.A.Nielsen and I.L.Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2010, 10thAnniversary Edition
- 2. Chris Bernhardt, Quantum Computing for Everyone, The MITPress, 2019.
- 3. RayLaPierre, Introduction to Quantum Computing, Springer, 2021.

Reference Books:

- 1. Quantum Theory: Concepts and Methods, AsherPeres, Kluwer Academic Publishers,1993.
- 2. Venkateswaran Kasirajan, Fundamentals of Quantum Computing: Theory and Practice, Springer, 2021.

Other Suggested Readings:

1. NPTELCourses(https://nptel.ac.in/courses/106106232

II Comoston	CMOS MIVED SIGNAL CIDCUIT DESIGN LAD	L	T	P	C
II Semester	CMOS MIXED SIGNAL CIRCUIT DESIGN LAB	0	1	2	2
	(V252125761)				

		Knowledge
		Level (K)
CO1	Implement discrete-time signal processing circuits tailored for mixed-	K4
	signal system requirements	
CO2		К3
	signal integrated circuits to ensure signal integrity and performance	
CO3		K5
	environments with appropriate gain, bandwidth, and stability	
CO4	Design high-speed comparators with enhanced resolution and low	K5
	latency for time-critical mixed-signal application	
CO5	Develop data converters and RF circuits considering performance	K4
	trade-offs in mixed-signal design scenarios.	

Mapping of course outcomes with program outcomes

Cycle	Syllabus	
Cycle 1	1) Fully compensated op-amp with resistor and	
	Miller compensation	
	2) Comparator design:	
	a. Linear Response	
	b. Slew-rate limited	
Cycle 2	3) Switched capacitor circuits:	
	i. Parasitic sensitive integrator	
	ii. Parasitic insensitive integrator	
	iii. Delay free integrators	
	iv. Low Pass filter	
	4) Data converters (ADC, DAC for given	
	specifications)	
	5) Layouts and parasitic extraction	

Text Books:

- 1. David Johns, Tony Chan Carusone and Kenneth Martin, Analog Integrated Circuit Design, Wiley, 2012, 2ndEdition.
- 2. Roubik Gregorian and Gabor C.Temes, Analog MOS integrated circuits for signal processing, Wiley, 1986.

Reference Books:

- 1. Roubik Gregorian, Introduction to CMOS Op-Amp and Comparators, Wiley,1999.
 - 2. Alan Hastings, Theart of Analog Layout, Wiley, 2005

Other Suggested Readings:

1. NPTELCourses(https://onlinecourses.nptel.ac.in/noc23_ee142/preview)

II Compostor	DIVERGAL DECICAL VEDICICATION LAD	L	T	P	C
II Semester	PHYSICAL DESIGN VERIFICATION LAB	0	1	2	2
	(V252125762)				

		Knowledge Level (K)
CO1	Implement and analyze graph-based algorithms used in physical design automation, including depth-first search, breadth-first search, spanning trees, and shortest path algorithms	K4
CO2	Apply computational geometry techniques such as line sweep and extended line sweep methods in geometric problem-solving relevant to VLSI layout	K3
CO3	Design and evaluate partitioning algorithms including Kernighan–Lin, Fiduccia–Mattheyses, and Goldberg–Burstein algorithms, as well as simulated annealing and evolution-based approaches	K5
CO4	Implement floorplanning techniques using constraint-based, integer programming, hierarchical tree, rectangular dualization, and simulated evolution strategies	K4
CO5	Develop and compare routing algorithms for two-terminal and multi- terminal nets, including maze routing and Steiner tree-based algorithms like SMST and Z-RST	K4

Cycle	Syllabus	
Cycle 1	1) Graph algorithms:	
	a) Graph search algorithms:	
	i. Depth first search	
	ii. Breadth first search	
	b) Spanning tree algorithm:	
	i. Kruskal's algorithm	
	c) Shortest path algorithm:	
	i. Dijkstra algorithm	
	ii. Floyd-Warshall algorithm	
	d) Steiner tree algorithm	
Cycle 2	2) Partitioning algorithms:	
	a. Kernighan-Lin algorithm	
	b. Fiduccias–Mattheyses algorithm	
	c. Simulated annealing and evolution algorithms	
	3) Floor planning algorithms:	
	i) Constraint based methods	
	ii) Integer programming based methods	
	iii) Rectangular dualization based methods	

iv) Simulated evolution algorithms	
4) Routing algorithms - Two terminal algorithms:	
a) Maze routing algorithms:	
i) Lee's algorithm	
ii) Soukup's algorithm	
iii) Hadlock algorithm	
h) Line-Probe algorithm	

Software required: C/C++ Programming Language /Relevant software

c) Shortest path based algorithm

Reading:

- 1) Naveed Shervani, Algorithms for Physical Design Automation, 3rd Edition, Kluwer Academic, 1998.
- 2) Charles J Alpert, Dinesh P Mehta, Sachin S. Sapatnekar, Handbook of Algorithms for Physical Design Automation, CRC Press,2008.